top of page
Jackson Cox
Jackson Cox

Jenny Chu Nude Pics



Background: Physical exercise may modify biologic stress responses. Objective: To investigate the impact of exercise training on vascular alterations induced by acute stress, focusing on nitric oxide and cyclooxygenase pathways. Method: Wistar rats were separated into: sedentary, trained (60-min swimming, 5 days/week during 8 weeks, carrying a 5% body-weight load), stressed (2 h-immobilization), and trained/stressed. Response curves for noradrenaline, in the absence and presence of L-NAME or indomethacin, were obtained in intact and denuded aortas (n=7-10). Results: None of the procedures altered the denuded aorta reactivity. Intact aortas from stressed, trained, and trained/stressed rats showed similar reduction in noradrenaline maximal responses (sedentary 3.540.15, stressed 2.800.10*, trained 2.820.11*, trained/stressed 2.97 0.21*, *P




Jenny Chu Nude Pics


Download Zip: https://www.google.com/url?q=https%3A%2F%2Ftinourl.com%2F2u7sPc&sa=D&sntz=1&usg=AOvVaw2oi-qSaL_HPYhvIO38g4Hh



Salt moderation is often recommended to prevent excessive increases in blood pressure during pregnancy, particularly in women who are prone to pregnancy-induced hypertension; however, the vascular effects of low dietary salt intake during pregnancy are unclear. We investigated whether a low-salt diet during pregnancy alters the mechanisms of vascular smooth muscle contraction. Active stress and (45)Ca(2+) influx were measured in endothelium-denuded aortic strips of virgin and normal pregnant Sprague-Dawley rats and a hypertensive pregnant rat model produced by reduction in uterine perfusion pressure (RUPP), fed either a normal-sodium (NS, 1% NaCl) or low-sodium diet (LS, 0.2% NaCl) for 7 days. The mean arterial pressure was as follows: virgin/NS 108 +/- 8, virgin/LS 117 +/- 7, pregnant/NS 102 +/- 3, pregnant/LS 117 +/- 4, RUPP/NS 119 +/- 3, and RUPP/LS 133 +/- 6 mm Hg. Phenylephrine (Phe) caused concentration-dependent increases in active stress and (45)Ca(2+) influx that were greater in RUPP rats than in normal pregnant or virgin rats and were enhanced in pregnant/LS and RUPP/LS compared with pregnant/NS and RUPP/NS, respectively. High KCl (16 to 96 mmol/L), which stimulates Ca(2+) entry from the extracellular space, also caused increases in active stress that were greater in RUPP than in normal pregnant, in pregnant/LS than in pregnant/NS, and in RUPP/LS than in RUPP/NS rats. The Phe-induced (45)Ca(2+) influx--active stress relation was greater in RUPP/NS than in pregnant/NS and was enhanced in pregnant/LS and RUPP/LS compared with pregnant/NS and RUPP/NS, respectively. In Ca(2+)-free (2 mmol/L ethylene glycol bis(beta-aminoethylether)-N,N,N',N'-tetra-acetic acid) Krebs, stimulation of intracellular Ca(2+) release by Phe (10(-5) mol/L) or caffeine (25 mmol/L) caused a transient contraction that was not significantly different in all groups of rats. Thus, a low-salt diet in pregnant and RUPP rats is associated with increases in vascular reactivity that involves Ca


Reactive oxygen species (ROS) were shown to mediate aberrant contractility in hypertension, yet the physiological roles of ROS in vascular smooth muscle contraction have remained elusive. This study aimed to examine whether ROS regulate alpha1-adrenoceptor-activated contraction by altering myosin phosphatase activities. Using endothelium-denuded rat tail artery (RTA) strips, effects of anti-oxidants on isometric force, ROS production, phosphorylation of the 20-kDa myosin light chain (MLC20), and myosin phosphatase stimulated by alpha1-adrenoceptor agonist phenylephrine were examined. An antioxidant, N-acetyl-L-cysteine (NAC), and two NADPH oxidase inhibitors, apocynin and VAS2870, dose-dependently inhibited contraction activated by phenylephrine. Phenylephrine stimulated superoxide anion production that was diminished by the pretreatment of apocynin, VAS2870, superoxide scavenger tiron or mitochondria inhibitor rotenone, but not by xanthine oxidase inhibitor allopurinol or cyclooxygenase inhibitor indomethacin. Concurrently, NADPH oxidase activity in RTA homogenates increased within 1 min upon phenylephrine stimulation, sustained for 10 min, and was abolished by the co-treatment with apocynin, but not allopurinol or rotenone. Phenylephrine-induced MLC20 phosphorylation was dose-dependently decreased by apocynin. Furthermore, apocynin inhibited phenylephrine-stimulated RhoA translocation to plasma membrane and phosphorylation of both myosin phosphatase regulatory subunit MYPT1Thr855 and myosin phosphatase inhibitor CPI-17Thr38. ROS, probably derived from NADPH oxidase and mitochondria, partially regulate alpha1-adrenoceptor-activated smooth muscle contraction by altering myosin phosphatase-mediated MLC20 phosphorylation through both RhoA/Rho kinase- and CPI-17-dependent pathways.


Androgenic anabolic steroid, physical exercise and stress induce cardiovascular adaptations including increased endothelial function. The present study investigated the effects of these conditions alone and in combination on the vascular responses of male Wistar rats. Exercise was started at 8 weeks of life (60-min swimming sessions 5 days per week for 8 weeks, while carrying a 5% body-weight load). One group received nandrolone (5 mg/kg, twice per week for 8 weeks, im). Acute immobilization stress (2 h) was induced immediately before the experimental protocol. Curves for noradrenaline were obtained for thoracic aorta, with and without endothelium from sedentary and trained rats, submitted or not to stress, treated or not with nandrolone. None of the procedures altered the vascular reactivity to noradrenaline in denuded aorta. In intact aorta, stress and exercise produced vascular adaptive responses characterized by endothelium-dependent hyporeactivity to noradrenaline. These conditions in combination did not potentiate the vascular adaptive response. Exercise-induced vascular adaptive response was abolished by nandrolone. In contrast, the aortal reactivity to noradrenaline of sedentary rats and the vascular adaptive response to stress of sedentary and trained rats were not affected by nandrolone. Maximum response for 7-10 rats/group (g): sedentary 3.8 0.2 vs trained 3.0 0.2*; sedentary/stress 2.7 0.2 vs trained/stress 3.1 0.1*; sedentary/nandrolone 3.6 0.1 vs trained/nandrolone 3.8 0.1; sedentary/stress/nandrolone 3.2 0.1 vs trained/stress/nandrolone 2.5 0.1*; *P


Investigate the role of NADPH oxidase on ethanol-induced hypertension and vascular oxidative stress. Male Wistar rats were treated with ethanol (20% v/v). Apocynin (10 mg/kg/day, i.p.) prevented ethanol-induced hypertension. The increased contractility of endothelium-intact and endothelium-denuded aortic rings from ethanol-treated rats to phenylephrine was prevented by apocynin. Ethanol consumption increased superoxide anion (O2 (-)) generation and lipid peroxidation and apocynin prevented these responses. The decrease on plasma and vascular nitrate/nitrite (NOx) levels induced by ethanol was not prevented by apocynin. Treatment with ethanol did not affect aortic levels of hydrogen peroxide (H2O2) or reduced glutathione (GSH). Ethanol did not alter the activities of xanthine oxidase (XO), superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx). Ethanol increased the expression of Nox1, PKCδ, nNOS, SAPK/JNK and SOD2 in the rat aorta and apocynin prevented these responses. No difference on aortic expression of Nox2, Nox4, p47phox, Nox organizer 1 (Noxo1), eNOS and iNOS was detected after treatment with ethanol. Ethanol treatment did not alter the phosphorylation of SAPK/JNK, p38MAPK, c-Src, Rac1 or PKCδ. The major new finding of our study is that the increased vascular generation of reactive oxygen species (ROS) induced by ethanol is related to increased vascular Nox1/NADPH oxidase expression. This mechanism is involved in vascular dysfunction and hypertension induced by ethanol. Additionally, we conclude that ethanol consumption induces the expression of different proteins that regulate vascular contraction and growth and that NADPH oxidase-derived ROS play a role in such response. The key findings of our study are that ethanol-induced hypertension is mediated by NADPH oxidase. Moreover, increased vascular Nox1 expression is related to the generation of reactive oxygen species (ROS) by ethanol. Finally, ROS induced by ethanol increase the


Since 1981, we have used the term metabolic syndrome to describe an association of a dysregulation in lipid metabolism (high triglycerides, low high-density lipoprotein cholesterol, disturbed glucose homeostasis (enhanced fasting and/or prandial glucose), gout, and hypertension), with android obesity being based on a common soil (overnutrition, reduced physical activity, sociocultural factors, and genetic predisposition). We hypothesized that main traits of the syndrome occur early and are tightly connected with hyperinsulinemia/insulin resistance, procoagulation, and cardiovascular diseases. To establish a close link between the traits of the metabolic vascular syndrome, we focused our literature search on recent original work and comprehensive reviews dealing with the topics metabolic syndrome, visceral obesity, fatty liver, fat tissue inflammation, insulin resistance, atherogenic dyslipidemia, arterial hypertension, and type 2 diabetes mellitus. Recent research supports the concept that the metabolic vascular syndrome is a multidimensional and interactive network of risk factors and diseases based on individual genetic susceptibility and epigenetic changes where metabolic dysregulation/metabolic inflexibility in different organs and vascular dysfunction are early interconnected. The metabolic vascular syndrome is not only a risk factor constellation but rather a life-long abnormality of a closely connected interactive cluster of developing diseases which escalate each other and should continuously attract the attention of every clinician.


グループについて

グループへようこそ!他のメンバーと交流したり、最新情報をチェックしたり、動画をシェアすることもできます。

メンバー

  • Koki Yamada
  • رضا الرحمان عمر
    رضا الرحمان عمر
  • Jackson Cox
    Jackson Cox
グループページ: Groups_SingleGroup
bottom of page